-
عضو جديد
Precursors
The Internet has precursors that date back to the 19th century, especially the telegraph system, more than a century before the digital Internet became widely used in the second half of the 1990s. The concept of data communication – transmitting data between two different places, connected via some kind of electromagnetic medium, such as radio or an electrical wire – predates the introduction of the first computers. Such communication systems were typically limited to point to point communication between two end devices. Telegraph systems and telex machines can be considered early precursors of this kind of communication.
Early computers used the technology available at the time to allow communication between the central processing unit and remote terminals. As the technology evolved, new systems were devised to allow communication over longer distances (for terminals) or with higher speed (for interconnection of local devices) that were necessary for the mainframe computer model. Using these technologies it was possible to exchange data (such as files) between remote computers. However, the point to point communication model was limited, as it did not allow for direct communication between any two arbitrary systems; a physical link was necessary. The technology was also deemed as inherently unsafe for strategic and military use, because there were no alternative paths for the communication in case of an enemy attack.
Three terminals and an ARPA
Main articles: RAND and ARPANET
A fundamental pioneer in the call for a global network, J. C. R. Licklider, articulated the ideas in his January 1960 paper, Man-Computer Symbiosis .
"A network of such [computers], connected to one another by wide-band communication lines [which provided] the functions of present-day libraries together with anticipated advances in information storage and retrieval and [other] symbiotic functions."
—J.C.R. Licklider, [2]
In August 1962, Licklider and Welden Clark published the paper "On-Line Man Computer Communication", one of the first descriptions of a networked future.
In October 1962, Licklider was hired by Jack Ruina as Director of the newly established Information Processing Techniques Office (IPTO) within DARPA, with a mandate to interconnect the United States Department of Defense's main computers at Cheyenne Mountain, the Pentagon, and SAC HQ. There he formed an informal group within DARPA to further computer research. He began by writing memos describing a distributed network to the IPTO staff, whom he called "Members and Affiliates of the Intergalactic Computer Network". As part of the information processing office's role, three network terminals had been installed: one for System Development Corporation in Santa Monica, one for Project Genie at the University of California, Berkeley and one for the Compatible Time-Sharing System project at the Massachusetts Institute of Technology (MIT). Licklider's identified need for inter-networking would be made obvious by the apparent waste of resources this caused.
"For each of these three terminals, I had three different sets of user commands. So if I was talking online with someone at S.D.C. and I wanted to talk to someone I knew at Berkeley or M.I.T. about this, I had to get up from the S.D.C. terminal, go over and log into the other terminal and get in touch with them. [...] I said, it's obvious what to do (But I don't want to do it): If you have these three terminals, there ought to be one terminal that goes anywhere you want to go where you have interactive computing. That idea is the ARPAnet."
—Robert W. Taylor, co-writer with Licklider of "The Computer as a Communications Device", in an interview with The New York Times, [3]
Although he left the IPTO in 1964, five years before the ARPANET went live, it was his vision of universal networking that provided the impetus that led his successors such as Lawrence Roberts and Robert Taylor to further the ARPANET development. Licklider later returned to lead the IPTO in 1973 for two years
Packet switching
At the tip of the problem lay the issue of connecting separate physical networks to form one logical network. During the 1960s, Paul Baran (RAND Corporation), produced a study of survivable networks for the US military. Information transmitted across Baran's network would be divided into what he called 'message-blocks'. Independently, Donald Davies (National Physical Laboratory, UK), proposed and developed a similar network based on what he called packet-switching, the term that would ultimately be adopted. Leonard Kleinrock (MIT) developed mathematical theory behind this technology. Packet-switching provides better bandwidth utilization and response times than the traditional circuit-switching technology used for telephony, particularly on resource-limited interconnection links.[5]
Packet switching is a rapid store-and-forward networking design that divides messages up into arbitrary packets, with routing decisions made per-packet. Early networks used message switched systems that required rigid routing structures prone to single point of failure. This led Tommy Krash and Paul Baran's U.S. military funded research to focus on using message-blocks to include network redundancy,[6] which in turn led to the widespread urban legend that the Internet was designed to resist XXXXXXX attack.
ضوابط المشاركة
- لا تستطيع إضافة مواضيع جديدة
- لا تستطيع الرد على المواضيع
- لا تستطيع إرفاق ملفات
- لا تستطيع تعديل مشاركاتك
-
قوانين المنتدى